Abstract: | The kinetics and equilibria of sorption of the divalent metal ions cobalt and nickel onto anaerobic granular sludge are described. Single component and binary equimolar systems were studied at different pH values (pH 6, 7 and 8). The kinetic modelling of metal sorption by anaerobic granular sludge has been carried out using Lagergren equations. On fitting the experimental kinetic data both in first‐ and pseudo‐second‐order equations, the regression analysis of a pseudo‐second‐order equation gave a higher r2 value, indicating that both external mass transfer and intra‐particle diffusion are involved in the sorption process. The experimental isotherm data were analysed using the Langmuir, Freundlich and Redlich–Peterson equations. The Redlich isotherm, a combination of the Langmuir and Freundlich equations, was found to have the highest regression correlation coefficients at pH 7. At pH 8, the Langmuir mechanism dominated for cobalt and nickel adsorption. In contrast, at pH 6, the Freundlich equation gave a better correlation coefficient which suggests a more heterogeneous adsorption at that pH. The maximal adsorption capacity of the granular sludge, as determined by the Langmuir equation, for cobalt or nickel in single systems (8.92 mg g?1 Co TSS; 9.41 mg g?1 Ni TSS, pH 7) compared with binary systems (8.06 mg g?1 Co TSS; 8.43 mg g?1 Ni TSS, pH 7) showed no great difference in the accumulation of these metals onto granular sludge. Copyright © 2004 Society of Chemical Industry |