首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的无人机遥感影像农村建筑物目标检测
作者姓名:任媛媛  张显峰  马永建  杨启原  汪传建  戴建国  赵庆展
作者单位:石河子大学信息科学与技术学院;国家遥感中心新疆兵团分部;北京大学遥感与地理信息系统研究所
摘    要:将深度学习应用于遥感影像目标识别,提出基于卷积神经网络的无人机遥感影像农村建筑物的目标检测方法,用端到端的方式训练Faster R-CNN网络模型,并应用于农村建筑物的快速精确识别.该方法包括基于RPN网络的区域建议和基于Inception v2的卷积神经网络模型训练.为了训练和测试模型,通过无人机采集南疆地区的农村建筑物遥感影像,并人工标注建立了农村建筑物的数据集,在TensorFlow深度学习框架上通过对该数据集目标检测验证了模型.结果表明,基于改进的卷积神经网络目标检测方法对无人机遥感影像进行快速准确识别的总体精度超过90%,通过初始参数更新,模型收敛更快,对无人机遥感影像地物分类和目标识别具有一定的参考意义.

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号