首页 | 本学科首页   官方微博 | 高级检索  
     

一种轴承故障检测的新方法
引用本文:吴晓波,赵武锋,陈志强. 一种轴承故障检测的新方法[J]. 仪器仪表学报, 2005, 26(5): 515-518
作者姓名:吴晓波  赵武锋  陈志强
作者单位:1. 浙江大学电气工程学院应用电子学系,杭州,310027
2. 浙江大学信息科学与工程学院信息与电子工程学系,杭州,310027
基金项目:浙江省科技厅资助项目。
摘    要:针对轴承故障检测中用一般的谱分析法难以实现故障的精确判定的问题,提出一种新的轴承故障检测方法。考虑到复倒谱法对周期性异常振动特征提取的有效性,利用频谱分析结合复倒谱分析对采集的轴承振动信号进行处理,先通过频域分析获取高、中、低频带的均值,再通过复倒谱方法获取异常振动产生的周期性激励信号提取振动信号特征参数,分离出噪声中的“异音”信号,并结合模糊算法,初步实现了轴承故障的智能定位。实验结果表明,该方法是有效的。在积累足够量的样本数后,可望建立相应的专家库,实现轴承故障的快速智能诊断。

关 键 词:故障检测  复倒谱  同态信号处理
修稿时间:2003-09-01

A New Method for Bearing Fault Detection
WU Xiaobo,Zhao Wufeng,Chen Zhiqiang. A New Method for Bearing Fault Detection[J]. Chinese Journal of Scientific Instrument, 2005, 26(5): 515-518
Authors:WU Xiaobo  Zhao Wufeng  Chen Zhiqiang
Affiliation:Wu Xiaobo1 Zhao Wufeng2 Chen Zhiqiang1 1
Abstract:It is usually difficult to detect the bearing faults accurately by using general spectrum analysis. To improve the detection accuracy, a new detection method was proposed. Due to the validity of the complex cepstrum analysis in characteristic extraction of the periodic abnormal vibration, the method combined the spectrum analysis with the complex cepstrum analysis to extract the characteristic parameters of the bearing vibration. It could be realized like this: the average magnitudes of the high, medium and low frequency vibration waves were extracted respectively by the spectrum analysis. And then the complex cepstrum analysis was used to extract its characteristic parameters. Finally, treating by the fuzzy algorithm, the specific noise was distinguished from the noise spectrum and the fault origins could be detected. The experimental results were consistent with the expectations well. Together with expert knowledge, intelligent bearing fault detection will be expected.
Keywords:Bearing fault detection Complex cepstrum Homomorphic signal processing
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号