首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Cationic (Na+) and Anionic (F−) Co-Doping on the Structural and Electrochemical Properties of LiNi1/3Mn1/3Co1/3O2 Cathode Material for Lithium-Ion Batteries
Authors:Hua Wang  Ahmed M Hashem  Ashraf E Abdel-Ghany  Somia M Abbas  Rasha S El-Tawil  Tianyi Li  Xintong Li  Hazim El-Mounayri  Andres Tovar  Likun Zhu  Alain Mauger  Christian M Julien
Abstract:Elemental doping for substituting lithium or oxygen sites has become a simple and effective technique to improve the electrochemical performance of layered cathode materials. Compared with single-element doping, this work presents an unprecedented contribution to the study of the effect of Na+/F co-doping on the structure and electrochemical performance of LiNi1/3Mn1/3Co1/3O2. The co-doped Li1-zNazNi1/3Mn1/3Co1/3O2-zFz (z = 0.025) and pristine LiNi1/3Co1/3Mn1/3O2 materials were synthesized via the sol–gel method using EDTA as a chelating agent. Structural analyses, carried out by X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy, revealed that the Na+ and F dopants were successfully incorporated into the Li and O sites, respectively. The co-doping resulted in larger Li-slab spacing, a lower degree of cation mixing, and the stabilization of the surface structure, which substantially enhanced the cycling stability and rate capability of the cathode material. The Na/F co-doped LiNi1/3Mn1/3Co1/3O2 electrode delivered an initial specific capacity of 142 mAh g−1 at a 1C rate (178 mAh g−1 at 0.1C), and it maintained 50% of its initial capacity after 1000 charge–discharge cycles at a 1C rate.
Keywords:LiNi1/3Mn1/3Co1/3O2  Na/F co-doping  layered oxide  cathode material  long-life cycling  lithium-ion batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号