首页 | 本学科首页   官方微博 | 高级检索  
     


Study on high strain rate superplasticity of A 6061Al alloy composite reinforced with 30 Vol.% AlN particulate
Authors:Lihong Han  Henry Hu  Derek O Northwood  Jitai Niu
Affiliation:(1) Department of Mechanical, Automotive and Materials Engineering, University of Windsor, N9B 3P4 Windsor, Ontario, Canada;(2) The National Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, 150001 Harbin, Heilongjiang Province, People’s Republic of China
Abstract:An investigation on the superplastic behavior of 30 vol.% AlNp/6061Al composite prepared by powder metallurgy (PM) techniques was carried out. Superplastic tensile tests of the composite were performed at strain rates ranging from 10° to 10−3 s−1 and at temperatures from 823 to 893 K. A fine-grained structure prior to superplastic testing was obtained by hot rolling after extrusion. The highest total elongation to failure of 438% was achieved at a temperature of 863 K and at an initial strain rate of 1.67×10−1 s−1 and the highest value of the strain rate sensitivity index (m) was 0.42 for the composite. Differential thermal analysis (DTA) was used to investigate the possibility of any partial melting in the vicinity of optimum superplastic temperatures. The formation of a liquid phase is attributed to the melting of the Al-Si eutectic phase at the surface of the AlN particulates at elevated temperatures, as determined by electron probe microanalysis (EPMA). The influence of the microstructure and the fracture behavior on the superplastic behavior of the composite was studied by transmission electronic microscopy (TEM) and scanning electron microscopy (SEM). A large number of matrix filaments were present at the fracture surfaces of the specimens when superplastic deformation of the composite was performed under the optimum superplastic test conditions. The presence of dislocations and fine recrystallized grains in the test specimens suggested that they play an important role in the high-strain-rate superplasticity for this composite.
Keywords:Al matrix composite  AlN particulate  superplasticity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号