首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental study of a micro-scale solar organic Rankine cycle system based on compound cylindrical Fresnel lens solar concentrator
Authors:Meng  Jia  Song  PanPan  Wei  MingShan  Tian  GuoHong  Zhao  Meng  Zheng  HongFei  Hu  GuangDa
Affiliation:1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
;2.Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7HX, UK
;
Abstract:In the present study, a micro-scale solar organic Rankine cycle power generation system was developed. The system comprises of a solar collection system based on compound cylindrical Fresnel lens concentrator and an organic Rankine cycle power generation system integrated with a scroll expander. YD320 and R245 fa were used as the heat transfer fluid and the working fluid, respectively. The effects of the evaporation pressure, the degree of superheat, and the mass flow rate of the working fluid were analyzed to evaluate the solar collection efficiency, the electric power output, the thermal efficiency and exergy efficiency of the system. The results illustrate that both the increasing evaporation pressure and decreasing superheat degree have positive impacts on solar collection efficiency. The electric power increases as the evaporation pressure increases, while the thermal efficiency and the exergy efficiency decrease. However, the system overall efficiency decreases slowly due to the increase of solar collection efficiency. The electric power increases with the increment of the working fluid mass flow rate. The increasing mass flow rate has no visible impact on the thermal and exergy efficiencies of organic Rankine cycle subsystem, whereas a slightly increase of the thermal and exergy efficiencies of the integrated system. The electric power decreases with the increase of the superheat degree, whereas the thermal and the exergy efficiencies of the system increase. The system works more suitably with a higher degree of superheat for the small mass flow rate condition.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号