首页 | 本学科首页   官方微博 | 高级检索  
     


Cross the data desert: generating textual-visual summary on the evolutionary microblog stream
Authors:Xiong  Yu  Zhou  Xiangmin  Zhang  Yifei  Feng  Shi  Wang  Daling
Affiliation:1.School of Computer Science and Engineering, Northeastern University, Shenyang, China
;2.School of Computer Science and Information Technology, RMIT University, Melbourne, Australia
;3.Key Laboratory of Medical Image Computing (Northeastern University), Ministry of Education, Shenyang, China
;
Abstract:

Effectively and efficiently summarizing social media is crucial and non-trivial to analyze social media. On social streams, events which are the main concept of semantic similar social messages, often bring us a firsthand story of daily news. However, to identify the valuable news, it is almost impossible to plough through millions of multi-modal messages one by one with traditional methods. Thus, it is urgent to summarize events with a few representative data samples on the streams. In this paper, we provide a vivid textual-visual media summarization approach for microblog streams, which exploits the incremental latent semantic analysis (LSA) of detected events. Firstly, with a novel weighting scheme for keyword relationship, we can detect and track daily sub-events on a keyword relation graph (WordGraph) of microblog streams effectively. Then, to summarize the stream with representative texts and images, we use cross-modal fusion to analyze the semantics of microblog texts and images incrementally and separately, with a novel incremental cross-modal LSA algorithm. The experimental results on a real microblog dataset show that our method is at least 1.31% better and 23.67% faster than existing state-of-the-art methods, and cross-modal fusion can improve the summarization performance by 4.16% on average.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号