首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of electromagnetic induction and noise on the regulation of sleep wake cycle
Authors:Jin  WuYin  Wang  An  Ma  Jun  Lin  Qian
Affiliation:1.School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
;2.Department of Physics, Lanzhou University of Technology, Lanzhou, 730050, China
;3.Editorial Department of Journal of Lanzhou University of Technology, Lanzhou, 730050, China
;
Abstract:As an exploration of electromagnetic induction effects on homeostatic regulation of sleep wake cycle, a magnetic flux term coupled with membrane current is proposed as an equivalent induction current act on a physiologically-motivated mathematical model, to study the effects of electromagnetic induction and its noise on the sleep wake cycle. The basic model includes 2 simplified Hodgkin-Huxley type neurons connected via glutamate(Glu) synapses, one of which additionally contains hypocretin/orexin(Hcrt/ox) as the functionally relevant co-transmitter. The numerical results suggest that when a constant current(DC) stimulus is applied to the model, the average fire frequency of the Hcrt/ox neuron could be modified from gamma to delta frequency with increased the intensity of electromagnetic induction, but the local Glu neuron transforms active into sleep state.Additionally, the homeostatic regulation function has better robustness to electromagnetic induction and its noise than the current or conductance noise, even there is a similar stochastic resonance phenomenon. For the circadian current input case, the time of wake up is delayed and fall asleep is advanced when the electromagnetic induction and its noise is considered. Furthermore, the effects of electromagnetic noise on the regulation is not significant, but only to inhibit the neuronal discharge activities and change the time of wake up and fall asleep of the Glu neuron, characterized by the sleep duration is slightly prolonged with increasing the strength of noise intensity.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号