首页 | 本学科首页   官方微博 | 高级检索  
     


Organic–inorganic hybrid boron‐containing phenol–formaldehyde resin/SiO2 nanocomposites
Authors:Jungang Gao  Chaojie Jiang  Weitao Ma
Abstract:The organic–inorganic hybrid boron‐containing phenol–formaldehyde (BPFR) resin/SiO2 nanocomposites was synthesized in‐situ from boric acid, phenol, and tetramethoxysilane. The structure of BPFR modified and the distributions of silicon element were studied by Fourier‐transform infrared spectroscopy, energy dispersive X‐ray spectrometry, and transmission electron microscope, respectively. The glass transition temperature (Tg) was determined by torsional braid analysis. The results show that silicon element distribution is homogeneous, and the size of nanosilica is about 40–60 nm. The thermal stability and kinetics parameters of thermal degradation were determined by thermogravimetry analysis (TGA). TGA results show that the resin modified has higher heat resistance property when the additive quantity of SiO2 was 3 wt%. The temperature of 5% weight loss is 487.7°C, which is 12.4°C higher than that of common BPFR. The residual ratio of 3 wt% SiO2/BPFR was 62.3% at the temperature of 900°C, which is 11.2% higher than that of common BPFR. The mechanics loss peak Tp of 3% SiO2/BPFR is 33°C higher than common BPFR. Fiberglass‐reinforced BPFR modified by 3 wt% SiO2 has better mechanical and dielectric properties than that of common BPFR. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号