首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical and mechanical properties of electrically conductive polyethersulfone composites
Affiliation:1. Dep. of Construction and Manufacturing Engineering, Univesity of Oviedo, Gijón,;2. Research Center for Power Engineering Problems of the Russian Academy of Sciences, Russian Federation;3. Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Japan;4. Dept. of Mechanical Engineering and Materials-CITV, Universitat Politècnica de València, 46022 Valencia, Spain.
Abstract:Electrically conductive polyethersulphone (pes) composites containing carbon fibres, nickel fibres, stainless steel fibres or aluminium flakes at various volume fractions up to 40% were fabricated and tested. For electromagnetic interference (emi) shielding effectiveness > 50 dB, the minimum filler volume fraction was 40% for carbon fibres of length 200 or 400 μm, 20% for nickel or stainless steel fibres, and 30% for aluminium flakes. The tensile strength first increased and then decreased with increasing filler content, such that the highest tensile strength occurred at 30 volume% (vol%) for carbon fibres (of length 200 or 400 μm) as the filler and at 10 vol% for nickel or stainless steel fibres. However, for carbon fibres (of length 100 μm) and aluminium flakes, the tensile strength increases up to at least 40 vol%. The best overall performance was provided by aluminium flakes at 40 vol%; the resistivity was 7 × 10−5 Ω cm, the emi shielding effectiveness was > 50 dB and tensile strength was 67 MPa. The resistivity of the aluminium flake composites was not affected by heating in air at 140°C for up to at least 144 h.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号