首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of perchlorate in water and soil by electrospray LC/MS/MS
Authors:Winkler Paul  Minteer Mark  Willey Janice
Affiliation:Time Solutions Corporation, 511 Creekside Court, Golden, Colorado 80403, Analytical Quality Associates, Albuquerque, New Mexico 87123, USA. winklerpc@aol.com
Abstract:A method has been developed for the determination of perchlorate in water and soil matrixes using electrospray liquid chromatography/mass spectrometry/mass spectrometry. Perchlorate is quantitated by monitoring the ion signal from mass 83, which is formed by a loss of an oxygen atom from the perchlorate molecular ion. The method was developed to be effective and economical in production laboratory analysis of perchlorate in environmental water and soil samples. Data were gathered to define method sensitivity, performance, selectivity, and robustness. Analyte stability, method susceptibility to interferences, and the reliability of the chlorine isotope ratio as an identification tool were examined. The aqueous method detection limit (MDL) is 0.05 microg/L and was determined using an actual groundwater matrix. The soil MDL is 0.5 microg/kg and was determined using Ottawa sand. The stability study was performed by spiking water samples at 0.25, 10, and 20 microg/L and analyzing them 50 days later. Acceptable recoveries were obtained for all samples. The relative standard deviation (RSD) for the replicate analyses in the stability study indicates that the method is capable of RSD values less than 5% in a relatively clean groundwater matrix. The ionization suppression study was performed by spiking water samples containing 1000 mg/L carbonate, chloride, and sulfate with 0.05 and 0.5 microg/L perchlorate and then measuring the recovery of the spike. The results indicate that the procedure does not have significant suppression effects at the high salt levels tested. Calibration, quality control sample, field sample, and suppression study data were combined to examine isotope ratio reliability. The results of that work show that chlorine isotope ratios can be used to define statistical process control limits for use as an additional analyte identification tool.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号