首页 | 本学科首页   官方微博 | 高级检索  
     

基于RSSI测距的加权概率定位算法
引用本文:陶金龙,康志伟,骆坚. 基于RSSI测距的加权概率定位算法[J]. 电子测量与仪器学报, 2014, 0(10): 1123-1129
作者姓名:陶金龙  康志伟  骆坚
作者单位:湖南大学信息科学与工程学院,长沙410082
基金项目:湖南省科技计划(No:2014WK2002)资助项目
摘    要:针对无线传感网络中每条链路衰减因子的不同,提出了一种基于RSSI测距的加权概率定位算法。该算法先将可能存在的未知节点区域划分成栅格,运用高斯噪声模拟路径衰减指数误差以构建信号传播概率模型,根据信号强度确定信标节点的权值。然后由概率模型和相应的权值赋予栅格不同的置信度,将置信度最大栅格的位置作为未知节点的坐标。最后根据网络的连通信息消除翻转歧义。实验表明,在相同的条件下,与MLS算法相比,该算法更接近真实环境,具有更高的定位精度。

关 键 词:无线传感网络  RSSI  概率模型  定位

Weighted probabilistic localization algorithm based on RSSI measurement
Tao Jinlong,Kang Zhiwei,Luo Jian. Weighted probabilistic localization algorithm based on RSSI measurement[J]. Journal of Electronic Measurement and Instrument, 2014, 0(10): 1123-1129
Authors:Tao Jinlong  Kang Zhiwei  Luo Jian
Affiliation:(College of Information Science and Engineering, Hunan University, Changsha 410082, China)
Abstract:Concerning the problem that path loss exponent for each link is different , a weighted probabilistic localiza-tion algorithm is proposed based on RSSI.Firstly, the area where the unknown node may exist is divided into a num-ber of grids.Using Gaussian noise simulates path loss exponent error to construct the probability model of radio signal propagation, the beacon nodes’ weights are determined according to their signal strengths.Then, grids’ confidence degree is calculated according to probability models and beacon nodes’ weights, the coordinates of the grid which has greatest confidence degree as unknown node’s location.Finally, according to the network topology information elimi-nates flip ambiguity .The simulation experiments show that under the same conditions , compared with the MLS algo-rithm, the proposed algorithm is closer to the real environment and has higher positioning accuracy .
Keywords:wireless sensor network  RSSI  probability model  localization
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号