首页 | 本学科首页   官方微博 | 高级检索  
     

基于Boosting算法的入侵检测
引用本文:况夯. 基于Boosting算法的入侵检测[J]. 计算机工程与应用, 2008, 44(4): 151-154. DOI: 10.3778/j.issn.1002-8331.2008.04.048
作者姓名:况夯
作者单位:重庆教育学院,重庆,400067
摘    要:提出了一种新颖的基于boosting BP 神经网络的入侵检测方法。为了提高BP神经网络的泛化能力,采用改进的Boosting方法,进行网络集成。Boosting方法采用更有效的参数求解方法,即弱分类器的加权参数不但与错误率有关,还与其对正样本的识别能力有关。对“KDD Cup 1999 Data”网络连接数据集进行特征选择和归一化处理之后用于训练神经网络并仿真实验,得到了较高的检测率和较低的误报率,仿真结果表明,提出的入侵检测方法是有效的。

关 键 词:入侵检测  Boosting方法  BP神经网络
文章编号:1002-8331(2008)04-0151-04
收稿时间:2007-07-03
修稿时间:2007-08-20

Intrusion detection based on boosting method
KUANG Hang. Intrusion detection based on boosting method[J]. Computer Engineering and Applications, 2008, 44(4): 151-154. DOI: 10.3778/j.issn.1002-8331.2008.04.048
Authors:KUANG Hang
Affiliation:Chongqing Education College,Chongqing 400067,China
Abstract:A novel method is proposed for intrusion detection based on improved boosting BP neural network.In order to improve the precision of the BP neural network for intrusion detection,the improved boosting algorithm is used to build an integration-neural network.The improved boosting adopts a new method to acquire parameters; the weighted parameters of weak classifiers are determined not only by the error rates,but also by their abilities to recognize the positive samples.Simulated experiments with KDD Cup 1999 network connections data which have been preprocessed with methods of features selection and normalization have shown that the proposed is effective for intrusion detection owing to excellent performance of the higher attack detection rate with lower false positive rate.
Keywords:intrusion detection  Boosting method  BP neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号