首页 | 本学科首页   官方微博 | 高级检索  
     


Decision support tools for advanced energy management
Authors:Karel Ma&#x  í  k, Zdenek Schindler,Petr Stluka
Affiliation:

aHoneywell Prague Laboratory, Pod vodárenskou věží 4, 182 08 Prague 8, Czech Republic

Abstract:Rising fuel costs boost energy prices, which is a driving force for improving efficiency of operation of any energy generation facility. This paper focuses on enhancing the operation of distributed integrated energy systems (IES), system that bring together all forms of cooling, heating and power (CCHP) technologies. Described methodology can be applied in power generation and district heating companies, as well as in small-scale systems that supply multiple types of utilities to consumers in industrial, commercial, residential and governmental spheres. Dispatching of such system in an optimal way needs to assess large number of production and purchasing schemes in conditions of continually changing market and variable utility demands influenced by many external factors, very often by weather conditions. The paper describes a combination of forecasting and optimization methods that supports effective decisions in IES system management. The forecaster generates the future most probable utility demand several hours or days ahead, derived from the past energy consumer behaviour. The optimizer generates economically most efficient operating schedule for the IES system that matches these forecasted energy demands and respects expected purchased energy prices.
Keywords:Integrated energy system   Energy management   Demand forecasting   Energy resource allocation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号