首页 | 本学科首页   官方微博 | 高级检索  
     

基于时序特征的图卷积协同过滤推荐算法
引用本文:陈一凡,朱民耀,朱晓强,宋海洋,陆小锋. 基于时序特征的图卷积协同过滤推荐算法[J]. 电子测量技术, 2022, 45(6): 79-85
作者姓名:陈一凡  朱民耀  朱晓强  宋海洋  陆小锋
作者单位:上海大学通信与信息工程学院 上海 200444
基金项目:上海市科委科技创新行动计划项目(基金编号:21511102605)资助
摘    要:基于图卷积神经网络的协同过滤推荐算法框架是目前最先进的推荐算法框架,该框架在用户-项目交互嵌入向量的特征学习中并未关注交互发生的时序性,但实际情况中,用户-项目交互普遍具有明显的时序特征,且是影响推荐性能的重要因素。因此,本文提出一种基于时序特征的图卷积协同过滤推荐算法,重做多个数据集,保留数据集时序特征等原始信息,总结归纳数据集中用户-项目交互的历史时序信息,并对其进行参数化处理,作为重要特征输入到图卷积网络模型训练的高阶协同信号传递中。在三个公开的官方数据集Gowalla,Yelp和Amazon-book上设置多组消融性实验,采用公认的评价指标ndcg和recall对推荐算法性能进行评价,实验结果证明,在同样参数设置下,基于时序特征的图卷积协同过滤推荐算法性能超越了现有同类型图卷积协同过滤推荐算法,验证了时序特征对提升推荐效果的积极作用,提高了模型训练效率和预测命中率,更加高效地解决网络信息过载问题,满足了更高的应用需求。

关 键 词:推荐算法;图卷积神经网络;协同过滤;时序特征

Graph convolution collaborative filtering recommendation algorithm based on the time series features
Chen Yifan,Zhu Minyao,Zhu Xiaoqiang,Song Haiyang,Lu Xiaofeng. Graph convolution collaborative filtering recommendation algorithm based on the time series features[J]. Electronic Measurement Technology, 2022, 45(6): 79-85
Authors:Chen Yifan  Zhu Minyao  Zhu Xiaoqiang  Song Haiyang  Lu Xiaofeng
Affiliation:School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
Abstract:The collaborative filtering recommendation algorithm framework based on graph convolutional neural network is the most advanced recommendation algorithm framework at present. The framework does not pay attention to the timing of interaction occurrence in the feature learning of user-item interaction embedding vector, but in actual situations, users- Item interaction generally has obvious timing characteristics and is an important factor affecting recommendation performance. Based on this, a graph convolution collaborative filtering recommendation algorithm based on time series features is proposed, which redo multiple data sets, retain the original information of the data sets, especially the time series features, and summarize the historical time series information of user-item interaction in the data set. It is parameterized and put as an important feature input to the high-order cooperative signal transmission of graph convolutional network model training. Set up multiple sets of ablative experiments on three publicly available official datasets-Gowalla, Yelp and Amazon-book, and use recognized evaluation indicators-ndcg and recall to evaluate the performance of the recommendation algorithm. The experimental results show that under the same parameter Settings, the figure convolution collaborative filtering recommendation algorithm based on temporal characteristics performance beyond the existing same type figure convolution, collaborative filtering recommendation algorithm to verify the timing characteristics are recommended to improve effect of the positive role, improve the efficiency of model training and prediction, shooting more efficiently solve the problem of network information overload, to satisfy the higher application requirements.
Keywords:recommendation algorithm   graph convolutional neural network   collaborative filtering   the time series features
点击此处可从《电子测量技术》浏览原始摘要信息
点击此处可从《电子测量技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号