首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLOX-S的安全帽反光衣检测算法
引用本文:程换新,蒋泽芹,程力,成凯. 基于改进YOLOX-S的安全帽反光衣检测算法[J]. 电子测量技术, 2022, 45(6): 130-135
作者姓名:程换新  蒋泽芹  程力  成凯
作者单位:1.青岛科技大学 自动化与电子工程学院 青岛 266061;2.中国科学院 新疆理化技术研究所 乌鲁木齐 830011
基金项目:国家海洋局重大专项项目 (国海科字[2016]494号No.30)
摘    要:在工业生产和交通工程中,安全帽和反光衣都是员工重要的生命安全保障。针对传统安全帽反光衣识别方法只能检测单一颜色反光衣、检测效率低的问题,提出一种基于改进YOLOX-S网络模型的安全帽反光衣检测方法。使用简化BiFPN模块替换原加强特征提取网络,提高网络对不同尺度的特征提取能力;使用Mosaic方法进行训练,提高网络在复杂场景下的检测能力;使用GIoU损失函数,进一步提高模型的识别准确率。在扩充后的安全帽反光衣数据集上实验表明,本文所提算法在保持较高推理速度的情况下,mAP达83.74%,与原YOLOX-S相比,对戴安全帽、穿反光衣和行人的检测AP值有1%~3%不等的提高,对反光衣颜色无依赖性,有效实现了快速准确的安全帽反光衣检测。

关 键 词:安全帽反光衣检测; YOLOX-S; BiFPN; Mosaic方法

Helmet and reflective clothing detection algorithm based on improved YOLOX-S
Cheng Huanxin,Jiang Zeqin,Cheng Li,Cheng Kai. Helmet and reflective clothing detection algorithm based on improved YOLOX-S[J]. Electronic Measurement Technology, 2022, 45(6): 130-135
Authors:Cheng Huanxin  Jiang Zeqin  Cheng Li  Cheng Kai
Affiliation:1. College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China;2. Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi; 830011, China
Abstract:In industrial production and traffic engineering, safety helmets and reflective clothing are important safety protection. Aiming at the problem that the traditional helmet reflective clothing recognition method can only detect single color reflective clothing and low detection efficiency, we proposed a helmet reflective clothing detection method based on improved YOLOX-S network model. The simplified BiFPN module is used to replace the original enhanced feature extraction network to improve the feature extraction ability of the network for targets with different scales. The mosaic method is used for model training to improve the detection ability of the network in complex scenes. The GIoU loss function is used to further improve the recognition accuracy of the model. Experiments on the expanded helmet reflector data set show that the proposed algorithm can achieve 83.74% map while maintaining a high detection speed. Compared with the original YOLOX-S, the detection AP of wearing helmets, reflective clothing and pedestrians is improved by 1% ~ 3%, and there is no dependence on the color of reflective clothing, which effectively realizes the rapid and accurate detection of helmets and reflective clothing.
Keywords:helmet and reflective clothing detection   YOLOX-S   BiFPN   Mosaic method
点击此处可从《电子测量技术》浏览原始摘要信息
点击此处可从《电子测量技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号