首页 | 本学科首页   官方微博 | 高级检索  
     

一种高效的K-medoids聚类算法
引用本文:夏宁霞,苏一丹,覃希. 一种高效的K-medoids聚类算法[J]. 计算机应用研究, 2010, 27(12): 4517-4519. DOI: 10.3969/j.issn.1001-3695.2010.12.035
作者姓名:夏宁霞  苏一丹  覃希
作者单位:1. 广西大学,计算机与电子信息学院,南宁,530004
2. 广西大学,计算机与电子信息学院,南宁,530004;广西工学院,计算机工程系,广西,柳州,545006
摘    要:针对K-medoids算法初始中心点选择敏感、大数据集聚类应用中性能低下等缺点,提出一个基于初始中心微调与增量中心候选集的改进K-medoids算法。新算法以微调方式优化初始中心,以中心候选集逐步扩展的方式来降低中心轮换的计算复杂性。实验结果表明,相对于传统的K-medoids算法,新算法可以提高聚类质量,有效缩短计算时间。

关 键 词:聚类; K-medoids算法   中心微调   增量候选

Efficient K-medoids clustering algorithm
XIA Ning-xia,SU Yi-dan,QIN Xi. Efficient K-medoids clustering algorithm[J]. Application Research of Computers, 2010, 27(12): 4517-4519. DOI: 10.3969/j.issn.1001-3695.2010.12.035
Authors:XIA Ning-xia  SU Yi-dan  QIN Xi
Affiliation:(1.School of Computer & Electronic Information, Guangxi University, Nanning 530004, China; 2.Dept. of Computer Engineering, Guangxi University of Technology, Liuzhou Guangxi 545006, China)
Abstract:Due to the disadvantages of sensitivity to the initial selection of the medoids and poor performance in large data set processing in the K-medoids clustering algorithm, this paper proposed an improved K-medoids algorithm based on a fine-tuned of initial medoids and an incremental candidate set of medoids. The proposed algorithm optimized initial medoids by fine-tu-ning and reduced computational complexity of medoids substitution through expanding medoids candidate set gradually. Expenrimental results demonstrate the effectiveness of this algorithm,which can improve clustering quality and significantly shorten the time in calculation compared with the traditional K-medoids algorithm.
Keywords:clustering   K-medoids algorithm   medoid fine-tuning   incremental candidate
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号