首页 | 本学科首页   官方微博 | 高级检索  
     


Polymer brush coatings for combating marine biofouling
Authors:Wen Jing Yang  Koon-Gee Neoh  En-Tang Kang  Serena Lay-Ming Teo  Daniel Rittschof
Affiliation:1. Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing 210046, PR China;2. Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260, Singapore;3. Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119223, Singapore;4. Duke University Marine Laboratory, Nicholas School of the Environment, 135 Duke Marine Lab Road, Beaufort, NC 28516-9721, USA
Abstract:A variety of functional polymer brushes and coatings have been developed for combating marine biofouling and biocorrosion with much less environmental impact than traditional biocides. This review summarizes recent developments in marine antifouling polymer brushes and coatings that are tethered to material surfaces and do not actively release biocides. Polymer brush coatings have been designed to inhibit molecular fouling, microfouling and macrofouling through incorporation or inclusion of multiple functionalities. Hydrophilic polymers, such as poly(ethylene glycol), hydrogels, zwitterionic polymers and polysaccharides, resist attachment of marine organisms effectively due to extensive hydration. Fouling release polymer coatings, based on fluoropolymers and poly(dimethylsiloxane) elastomers, minimize adhesion between marine organisms and material surfaces, leading to easy removal of biofoulants. Polycationic coatings are effective in reducing marine biofouling partly because of their good bactericidal properties. Recent advances in controlled radical polymerization and click chemistry have also allowed better molecular design and engineering of multifunctional brush coatings for improved antifouling efficacies.
Keywords:AA, alginic acid   AAm, acrylamide   AFM, atomic force microscope   AMPS, 2-acrylamide-2-methyl-1-propanesulfonate   ATRP, atom transfer radical polymerization   CBMA, carboxybetaine methacrylate   CRP, controlled/living radical polymerization   GPS, 3-(glycidoxypropyl)trimethoxysilane   HA, hyaluronic acid   HBFP, hyperbranched fluoropolymer   HEMA, 2-hydroxyethyl methacrylate   IDT, isophorone diisocyanate trimer   META, 2-(methacryloyloxy)ethyl trimethylammonium chloride   MIC, microbiologically influenced corrosion   MPC, 2-methacryloyloxyethyl phosphorylcholine   MWCNT, multi-wall carbon nanotubes   NA, noradrenaline   OEG, oligo(ethylene glycol)   P4VP, poly(4-vinylpridine)   PA, pectic acid   PAA, poly(acrylic acid)   PANI, polyaniline   PDMAEMA, poly(2-dimethylaminoethyl methacrylate)   PDMS, poly(dimethylsiloxane)   PEG, poly(ethylene glycol)   PEGMA, poly(ethylene glycol) methacrylate   PEI, polyethyleneimine   PFPE, penfluoropolyether   PFS, 2,3,4,5,6-pentafluorostyrene   PGMA, poly(glycidyl methacrylate)   PS-b-P(EO-stat-AGE), polystyrene-block-poly[(ethylene oxide)-stat-(allyl glycidyl ether)]   PSPMA, poly(3-sulfopropyl methacrylate)   PTMSPMA, poly(3-(trimethoxysilyl) propyl methacrylate)   PVA-SbQ, poly(vinyl alcohol) with stilbazolium   QAC, quaternary ammonium cations   QAS, quaternary ammonium salts   SABC, surface-active block copolymers   SBMA, sulfobetaine methacrylate   SEBS, polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene   SI-ATRP, surface-initiated atom transfer radical polymerization   SPC, self-polishing copolymer   SQTC, semifluorinated-quaternized triblock copolymers   TBT, tributyltin   TEM, transmission electron microscopy   TPCL, polycaprolactone polyol
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号