Conjugated-polymer grafting on inorganic and organic substrates: A new trend in organic electronic materials |
| |
Authors: | Antoine Bousquet Hussein Awada Roger C. Hiorns Christine Dagron-Lartigau Laurent Billon |
| |
Affiliation: | 1. Université de Pau et des Pays de l’Adour (UPPA), Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), CNRS UMR 5254, Equipe de Physico-Chimie des Polymères (EPCP), Hélioparc, 2 avenue Angot, 64053 Pau Cedex 9, France;2. CNRS, IPREM, EPCP, Hélioparc, 2 avenue Angot, 64053 Pau Cedex 9, France |
| |
Abstract: | ![]() This review highlights recent developments in the grafting of conjugated polymers onto various substrates for organic electronic devices. The rapid development of multi-layer architectures demands the preparation of well-defined interfaces between both compatible and incompatible materials. It is promising therefore that interface-engineering is now known to help passivate charge trap states, control energy level alignments, enhance charge extraction, guide active-layer morphologies, and improve material compatibility, adhesion and device stability. In organic electronic devices, conjugated polymers are in contact with a wide range of constituents, such as metals, metal oxides, organic materials, and inorganic particles. Covalent bonds between these materials and macromolecules are desired to yield intimate contacts and well-defined interfaces. Following an overview of the various synthetic methodologies of conjugated polymers, the chemistry of tethering macromolecular chains onto nanoparticles and flat surfaces is described. The creation of functional hybrid materials offers the potential to deliver efficient and low-cost devices. |
| |
Keywords: | AFM, atomic force microscopy Ar, aromatic Bipy, 2,2&prime -bipyridil CdSe, cadmium selenium CdTe, cadmium tellurium CNM, carbon nanomaterial CNT, carbon nanorube COD, 1,5-cyclooctadiene CP, conjugated polymer CTP, chain transfer polycondensation CV, cyclic voltammetry ?, dispersity DA, Diels&ndash Alder dppe, 1,2-bis(diphenylphosphino)ethane dppp, 1,2-bis(diphenylphosphino)propane DSSC, dye synthesized solar cell GO, graphene oxide HOMO, highest occupied molecular orbital IR, infra-red ITO, indium tin oxide LUMO, lowest unoccupied molecular orbital MALDI-TOF, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry MEH-PPV, poly[1-methoxy-4-(2-ethylhexyloxy)-p-phenylene vinylene] Mn, average number molar mass Mm, average mass molar mass MW, multi-wall NC, nanocrystals NMR, nuclear magnetic resonance NP, nanoparticle NR, nanorod OLED, organic light-emitting diodes OPV, organic photovoltaics P3AT, poly(3-alkylthiophene) P3HT, poly(3-hexylthiophene) P3MT, poly(3-methylthiophene) P3OT, poly(3-octylthiophene) P4VP, poly(4-vinylpyridine) PA, polyacetylene PCE, power conversion efficiency PEDOT:PSS, poly(3,4-ethylenedioxythiophene)-compl-poly(vinylbenzenesulfonic acid) PF, polyfluorene PFCF, poly-[4,4&prime -(9H-fluorene-9,9-diyl)bis(N,N-diphenylbenzenamine)(4-(9H-carbazol-9-yl)benzaldehyde(9,9-dihexyl-9H-fluorene)] PFTPA, poly{4,4&prime -[4-(9-phenyl-9H-fluoren-9-yl)phenylazanediyl]dibenzaldehyde}-[4,4&prime -(9H-fluorene-9,9-diyl)bis(NN-diphenylbenzenamine)]-(9,9-dihexyl-9H-fluorene) PMMA, poly(methyl methacrylate) PNIPAM, poly(N-isopropyl acrylamide) PTM, poly(thiophene-maleimide) PP, polyphenylene PPE, poly(phenylene ethynylene) PPh3, triphenylphosphine PPV, poly(phenylene vinylene) PSBr, poly(4-bromostyrene) PSI, poly(4-iodostyrene) QD, quantum dots SAM, self-assembled monolayer GPC, gel permeation chromatography SEM, scanning electronic microscopy SI-KCTP, surface-initiated Kumada catalyst transfer polycondensation SiO2, silicon dioxide SW, single wall TEM, transmission electron microscopy TGA, thermo-gravimetric analysis THF, tetrahydrofuran TiO2, titanium dioxide TNT, trinitrotoluene UV, ultra-violet XPS, X-ray photoelectron induced spectroscopy ZnO, zinc oxide |
本文献已被 ScienceDirect 等数据库收录! |
|