首页 | 本学科首页   官方微博 | 高级检索  
     


Low-dimensional carbonaceous nanofiller induced polymer crystallization
Authors:Jia-Zhuang Xu  Gan-Ji Zhong  Benjamin S. Hsiao  Qiang Fu  Zhong-Ming Li
Affiliation:1. College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China;2. Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
Abstract:Low-dimensional carbonaceous nanofillers (LDCNs), i.e., fullerene, carbon nanofiber, carbon nanotube, and graphene, have emerged as a new class of functional nanomaterials world-wide due to their exceptional electrical, thermal, optical, and mechanical properties. One of the most promising applications of LDCNs is in polymer nanocomposites; these materials endow the polymer matrix with significant physical reinforcement and/or multi-functional capabilities. The relations between properties, structure and morphology of polymers in the nanocomposites offer an effective pathway to obtain novel and desired properties via structure manipulation, wherein the interfacial crystallization and the crystalline structure with the matrix are critical factors. By now, extensive studies have reported that LDCNs are highly effective nucleating agents that can significantly accelerate their crystallization kinetics and/or induce unique crystalline morphologies in nanocomposites. This review presents a thorough survey of the current literature on the issues relevant to LDCN-induced polymer crystallization. After a brief introduction to each type of LDCN and its derivatives, LDCN-induced crystallization kinetics with or without flow fields, crystalline modification, and interfacial crystalline morphologies are thoroughly reviewed. Then, the origins of LDCN-induced polymer crystallization are discussed in depth based on molecular simulation and experimental studies. Finally, an overview of the challenges in probing LDCN-induced polymer crystallization and the outlook for future developments in polymer/LDCN nanocomposites conclude this paper. Understanding LDCN-induced polymer crystallization offers a helpful guidance to purposefully regulate the structure and morphology, then achieving high-performance polymer/LDCN nanocomposites.
Keywords:0D, zero-dimensional   1D, one-dimensional   2D, two-dimensional   AC, alternating current   aCGNTs, aligned catalytically grown nanotubes   AFM, atomic force microscope   AGNTs, arc-grown nanotubes   APTS, 3-aminopropyltriethoxysilane   n, Avrami exponent   CNFs, carbon nanofibers   CNTs, carbon nanotubes   CMG, chemically modified graphene   CVD, chemical vapor deposition   DMA, dynamical mechanical analysis   DPIM, dynamic packing injection molding   DSC, differential scanning calorimetry   eCGNTs, entangled catalytically grown nanotubes   EMI, electromagnetic interference   EP, ethylene-propylene copolymer   ESD, electrostatic shielding discharge   EVA, ethylene&ndash  vinyl acetate copolymer   FGS, functionalized graphene sheets   FIC, flow-induced crystallization   FTIR, Fourier-transform infrared spectroscopy   GNPs, graphene nanoplatelets   GONSs, graphene oxide nanosheets   HDPE, high density polyethylene   iPP, isotactic polypropylene   ISI, Institute for Scientific Information   LDCNs, low-dimensional carbonaceous nanofillers   LLDPE, linear low density polyethylene   MD, molecular dynamic   MM, molecular mechanics   MWNTs, multi-walled carbon nanotubes   ODA, octadecylamine   OPIM, oscillating packing injection molding   P3HT, poly(3-Hexylthiophene)   PA, polyamide   PA12, polyamide12   PA6, polyamide6   PA6,6, poliamid6,6   PAN, polyacrylonitrile   PANI, polyaniline   PBS, Poly(butylene terephthalate)   PBSA, poly(butylene succinate-cobutylene adipate)   PBT, poly(butylene terephthalate)   PC, polycarbonate   PE, polyethylene   PEEK, poly(ether ether ketone)   PEN, polyethylene-naphthalate   PEO, poly(ethylene oxide)   PET, polyethylene-terephthalate   PLLA, poly(L-lactide) acid   PLM, polarized light microscopy   POM, polyoxymethylene   PPS, polyphenylene-sulfide   PS, polystyrene   PVA, poly(vinyl alcohol)   PVC, polyvinyl-chloride   PVCH-PE-PVCH, poly(vinylcyclohexane)-b-poly(ethylene)- b-poly(vinylcyclohexane)   PVD, physical vapor deposition   PVDF, poly(vinylidene fluoride)   RAF, rigid amorphous fraction   RGO, reduced graphene oxide   SAED, selected area electron diffraction   SAIPE method, SC CO2 antisolvent-induced polymer epitaxy method   SC CO2, supercritical carbon dioxide   SEM, scanning electron microscopy   SC, supercritical   SICO, surface-induced conformational ordering   SSE, size-dependent soft epitaxy   SWNTs, single-walled carbon nanotubes   t1/2, half crystallization time   Tc, crystallization temperature   TC, transcrystallinity   TEM, transmission electron microscopy   Tg, glass transition temperature   Tm, melting temperature   Tp, peak crystallization temperature   TMA, thermo mechanical analysis   UHMWPE, ultrahigh molecular weight polyethylene   VDW, van der Waals   α-iPP, alpha form of iPP   β-iPP, beta form of iPP   β-PVDF, beta form of PVDF   ΔE, crystallization activation energy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号