首页 | 本学科首页   官方微博 | 高级检索  
     


Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes
Authors:Jin Ran  Liang WuZhenghui Zhang  Tongwen Xu
Affiliation:CAS Key Laboratory of Soft Matter Chemistry, Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, PR China
Abstract:The progress in atom transfer radical polymerization (ATRP) provides an effective means for the design and preparation of functional membranes. Polymeric membranes with different macromolecular architectures applied in fuel cells, including block and graft copolymers are conveniently prepared via ATRP. Moreover, ATRP has also been widely used to introduce functionality onto the membrane surface to enhance its use in specific applications, such as antifouling, stimuli-responsive, adsorption function and pervaporation. In this review, the recent design and synthesis of advanced functional membranes via the ATRP technique are discussed in detail and their especial advantages are highlighted by selected examples extract the principles for preparation or modification of membranes using the ATRP methodology.
Keywords:AEMs  anion exchange membranes  AGET  activators generated by electron transfer  ARGET  activators regenerated by electron transfer  ATRP  atom transfer radical polymerization  BSA  bovine serum albumin  CB  carboxybetaine  CTFE  chlorotrifluoroethylene  DMAEMA  2-(dimethylamino)ethyl methacrylate  DP  degree of polymerization  FMA  2H-perfluorooctyl methacrylate  FPAE  fluorinated poly(arylene ether)  GMA  glycidyl methacrylate  GY  grafting yield  HEM  hydroxyethyl  HEMA  2-hydroxyethyl methacrylate  HEX  hexagonally packed cylinder  HMA  hexyl methacrylate  HMTETA  1  1  4  7  10  10-hexamethyl triethylene tetramine  HPL  hexagonally perforated lamellar  LAM  lamellar  MBR  membrane bioreactor  MeOEGMA  monomethoxy oligo(ethylene glycol)methacrylate  MF  microfiltration  NF  nanofiltration  NMDG  N-methylglucamine  NS  norbornenylethylstyrene  NSS  neopentyl-p-styrene sulfonate  NVP  N-vinyl-2-pyrrolidone  P(AA-Na)  poly(acrylic acid sodium)  P(VDF-co-HFP)  poly(vinylidene difluride-co-hexafluoropropylene)  PAAc  poly(acrylic acid)  PAES  poly(arylene ether sulfone)  PC  phosphobetaine  PEEK  poly(ether ether ketone)  PEG  poly(ethylene glycol)  PEMs  proton exchange membranes  PES  poly(ether sulfone)  PESEKK  poly(ether sulfone ether ketone ketone)  PET  poly(ethyleneterephthalate)  PHMA-b-PS-PHMA  poly(hexyl methacrylate)-b-poly(styrene)-b-poly(hexyl methacrylate)  PNIAAM  poly(N-isopropylacrylamide)  PP  polypropylene  PPESK  poly(phthalazinone ether sulfone ketone)  PPO  poly(2  6-dimethylphenylene oxide)  PSF  polysulfone  PSSA  poly(styrene sulfonic acid)  PtBA  poly(tert-butyl acrylate)  PVC  poly(vinyl chloride)  PVDF  poly(vinylidene)  PVDF-co-CTFE  poly(vinylidene difluoride-co-chlorotrifluoroethylene)  RC  regenerated cellulose  RO  reverse osmosis  SANS  small-angle X-ray scattering  SB  sulfobetaine  SBMA  sulfobetaine methacrylate  SI-ATRP  surface-initiated ATRP  SPM  3-sulfopropyl methacrylate potassium salt  SPMA  sulfopropyl methacrylate  SSA  styrene sulfonic acid  Sty  styrene  TEM  transmission electron microscopy  TEOS  tetraethoxysilane  UF  ultrafiltration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号