首页 | 本学科首页   官方微博 | 高级检索  
     

Dynamics and Wheel’s Slip Ratio of a Wheel-legged Robot in Wheeled Motion Considering the Change of Height
基金项目:supported by National Outstanding Youth Science Foundation of China (Grant No. 51125020);National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z207);Program for New Century Excellent Talents in University, China
摘    要:The existing research on dynamics and slip ratio of wheeled mobile robot (WMR) are derived without considering the effect of height, and the existing models can not be used to analyze the dynamics performance of the robot with variable height while moving such as NOROS-Ⅱ. The existing method of dynamics modeling is improved by adding the constraint equation between perpendicular displacement of body and horizontal displacement of wheel into the constraint conditions. The dynamic model of NOROS-Ⅱ in wheel motion is built by the Lagrange method under nonholonomic constraints. The inverse dynamics is calculated in three different paths based on this model, and the results demonstrate that torques of hip pitching joints are inversely proportional to the height of robot. The relative error of calculated torques is less than 2% compared with that of ADAMS simulation, by which the validity of dynamic model is verified. Moreover, the relative horizontal motion between fore?hind wheels and body is produced when the height is changed, and thus the accurate slip ratio can not be obtained by the traditional equation. The improved slip ratio equations with the parameter of the vertical velocity of body are introduced for fore wheels and hind wheels respectively. Numerical simulations of slip ratios are conducted to reveal the effect of varied height on slip ratios of different wheels. The result shows that the slip ratios of fore?hind wheels become larger?smaller respectively as the height increases, and as the height is reduced, the reverse applies. The proposed research of dynamic model and slip ratio based on the robot height provides the effective method to analyze the dynamics of WMRs with varying height.

关 键 词:wheel-legged robot  dynamics  slip ratio  change of height  nonholonomic constraints

Dynamics and wheel's slip ratio of a wheel-legged robot in wheeled motion considering the change of height
Xilun Ding,Kejia Li,Kun Xu. Dynamics and wheel's slip ratio of a wheel-legged robot in wheeled motion considering the change of height[J]. Chinese Journal of Mechanical Engineering, 2012, 25(5): 1060-1067. DOI: 10.3901/CJME.2012.05.1060
Authors:Xilun Ding  Kejia Li  Kun Xu
Affiliation:School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
Abstract:The existing research on dynamics and slip ratio of wheeled mobile robot (WMR) are derived without considering the effect of height, and the existing models can not be used to analyze the dynamics performance of the robot with variable height while moving such as NOROS-II. The existing method of dynamics modeling is improved by adding the constraint equation between perpendicular displacement of body and horizontal displacement of wheel into the constraint conditions. The dynamic model of NOROS-II in wheel motion is built by the Lagrange method under nonholonomic constraints. The inverse dynamics is calculated in three different paths based on this model, and the results demonstrate that torques of hip pitching joints are inversely proportional to the height of robot. The relative error of calculated torques is less than 2% compared with that of ADAMS simulation, by which the validity of dynamic model is verified. Moreover, the relative horizontal motion between fore/hind wheels and body is produced when the height is changed, and thus the accurate slip ratio can not be obtained by the traditional equation. The improved slip ratio equations with the parameter of the vertical velocity of body are introduced for fore wheels and hind wheels respectively. Numerical simulations of slip ratios are conducted to reveal the effect of varied height on slip ratios of different wheels. The result shows that the slip ratios of fore/hind wheels become larger/smaller respectively as the height increases, and as the height is reduced, the reverse applies. The proposed research of dynamic model and slip ratio based on the robot height provides the effective method to analyze the dynamics of WMRs with varying height.
Keywords:wheel-legged robot  dynamics  slip ratio  change of height  nonholonomic constraints
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号