首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of PHITS spallation models on the neutronics design of an accelerator-driven system
Authors:Hiroki Iwamoto  Kenji Nishihara  Yosuke Iwamoto  Shintaro Hashimoto  Norihiro Matsuda  Tatsuhiko Sato
Affiliation:Japan Atomic Energy Agency, Ibaraki, Japan
Abstract:The impact of different spallation models and parametrisation of nucleon–nucleus interactions in the particle transport code PHITS on the nuclear characteristics of an accelerator-driven system (ADS) is investigated. Cut-off neutrons below 20 MeV calculated using the default option of the current spallation model (i.e. Liège intranuclear cascade (INC) model version 4.6, INCL4.6) are found to be 14% less than those calculated by the old spallation model (i.e. Bertini INC model). This decrease increases the proton beam current that drives the 800-MW thermal power and impacts various ADS parameters, including material damage, nuclear heating of the proton beam window and the inventory of spallation products. To validate these options based on the ADS neutronics design, we conduct benchmark calculations of the total and non-elastic cross sections, thick target neutron yields and activation reaction rate distributions. The results suggest that Pearlstein–Niita systematics, which is a default option of the nucleon–nucleus interaction parametrisation, would be the best option and that Bertini INC is better suited for cut-off neutrons than INCL4.6. However, because of the difficulty in making a definite conclusion on the spallation models, we conclude that relatively large uncertainty in the cut-off neutrons, which is the difference between the two spallation models (i.e. 14%), should be considered.
Keywords:Accelerator-driven system  PHITS  spallation model  proton beam window  cut-off neutron  thick target neutron yield  activation reaction rate distribution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号