首页 | 本学科首页   官方微博 | 高级检索  
     

基于EMMD和AR奇异值熵的故障特征提取方法研究
引用本文:宁宁,张骏,秦文娟. 基于EMMD和AR奇异值熵的故障特征提取方法研究[J]. 测控技术, 2008, 27(9)
作者姓名:宁宁  张骏  秦文娟
作者单位:西北工业大学,自动化学院,陕西,西安,710072;西北工业大学,自动化学院,陕西,西安,710072;西北工业大学,自动化学院,陕西,西安,710072
摘    要:提出了一种基于EMMD(extremum field mean mode decomposition)和AR(auto-regressive)奇异值熵的故障特征提取方法。该方法在对故障信号的EMMD分解基础上,选取有限个固有模态函数(IMF,intrinsic mode function)的AR模型参数向量作为故障的初始特征向量矩阵,对初始特征向量矩阵求取奇异值熵,通过奇异值熵的大小表征故障类型。对转子故障数据的分析结果表明该方法能够有效地应用于非线性和非平稳故障信号的特征提取。

关 键 词:EMMD  AR模型  奇异值熵  故障特征提取

Research on Fault Feature Extraction Approach Based on EMMD and Singular Value Entropy of AR Model
NING Ning,ZHANG Jun,QIN Wen-juan. Research on Fault Feature Extraction Approach Based on EMMD and Singular Value Entropy of AR Model[J]. Measurement & Control Technology, 2008, 27(9)
Authors:NING Ning  ZHANG Jun  QIN Wen-juan
Abstract:A fault feature extraction approach based on extremum field mean mode decomposition(EMMD) and singular value entropy of auto-regressive(AR) model is proposed.The fault signal is decomposed with EMMD into a number of intrinsic mode functions(IMF),and the AR model of each IMF component is established.Then the AR parameters and the variance of remnant are regarded as the initial feature vectors,from which the initial feature vector matrix is formed.By applying the singular value decomposition to the initial feature vector matrix,the singular value entropy is obtained,which can discriminate the fault type.The experimental results of rotor system fault show that the proposed method can be applied to fault feature extraction for nonlinear and nonstationary fault signals efficiently.
Keywords:EMMD  auto-regressive model  singular value entropy  fault feature extraction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号