首页 | 本学科首页   官方微博 | 高级检索  
     

轴向运动黏弹性Timoshenko梁横向非线性强受迫振动
引用本文:李彪,唐有绮,丁虎,陈立群. 轴向运动黏弹性Timoshenko梁横向非线性强受迫振动[J]. 振动与冲击, 2012, 31(13): 142-146. DOI:  
作者姓名:李彪  唐有绮  丁虎  陈立群
作者单位:1. 上海大学 上海市应用数学和力学研究所,上海 200072;2. 上海大学 力学系,上海 200444
基金项目:国家杰出青年科学基金,国家自然科学基金,上海市优秀学科带头人计划,上海市重点学科建设项目,高等学校博士学科点专项科研基金
摘    要:研究轴向运动黏弹性Timoshenko梁横向非线性强受迫振动的稳态响应。由广义Hamilton变分原理推导出轴向运动黏弹性Timoshenko梁横向振动的控制方程及相应的边界条件。模型中考虑剪切模量、转动惯量对梁的影响。黏弹性本构关系中运用Kelvin模型并引入物质时间导数。对控制方程施用直接多尺度法,建立强受迫共振的可解性条件,得到稳态响应振幅与激励频率关系曲线。应用Routh-Hurwitz判据判断稳态响应振幅的稳定性。利用数值结果给出不同参数下,如非线性系数、激励振幅与黏弹性阻尼等对稳态幅频响应及稳定性影响。

关 键 词:轴向运动Timoshenko梁   黏弹性   受迫共振   稳定性   多尺度法 
收稿时间:2011-03-25
修稿时间:2011-06-16

Nonlinear vibrations of axially moving viscoelastic Timoshenko beams under strong external excitation
LI Biao , TANG You-qi , DING Hu , CHEN Li-qun. Nonlinear vibrations of axially moving viscoelastic Timoshenko beams under strong external excitation[J]. Journal of Vibration and Shock, 2012, 31(13): 142-146. DOI:  
Authors:LI Biao    TANG You-qi    DING Hu    CHEN Li-qun
Affiliation:1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, China;2. Department of Mechanics, Shanghai University, Shanghai 200444, China
Abstract:Nonlinear vibrations of axially moving viscoelastic Timoshenko beams under strong external excitations were investigated.The governing partial-differential equations were derived according to the extended Hamilton’s principle.The effects of shear deformation and rotary inertia were taken into account.The beam material obeys the Kelvin model in which the material derivative was taken part in the viscoelastic constitution relation instead of the simple partial time derivative.The method of multiple scales was applied to obtain the steady state response and establish the solvability conditions.The stability boundaries were formulated analytically via Routh-Hurwitz criterion.Some numerical examples were presented to demonstrate the effects of related parameters on the response.
Keywords:axially moving Timoshenko beam  viscoelastic  forced vibration  stability  method of multiple scales
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号