首页 | 本学科首页   官方微博 | 高级检索  
     

基于超限学习机的WSNs链路质量评估方法
引用本文:刘琳岚,许江波,陈宇斌,舒坚. 基于超限学习机的WSNs链路质量评估方法[J]. 北京邮电大学学报, 2018, 41(1): 134-138. DOI: 10.13190/j.jbupt.2017-185
作者姓名:刘琳岚  许江波  陈宇斌  舒坚
作者单位:1. 南昌航空大学 信息工程学院, 南昌 330063;
2. 南昌航空大学 软件学院, 南昌 330063
基金项目:国家自然科学基金项目,江西省自然科学基金重点项目,江西省研究生创新专项项目
摘    要:提出基于超限学习机的链路质量评估方法.选择非对称性指标、信噪比变异系数、均值信噪比为链路质量参数,以包接收率为链路质量评价指标,划分链路质量等级;采用粒子群算法优化超限学习机的输入层权重和偏置参数,构建链路质量评估模型.不同场景下的实验结果表明,与支持向量分类机评估方法相比,所提方法具有更高的评估准确率.

关 键 词:无线传感器网络  链路质量评估  超限学习机  粒子群优化算法  
收稿时间:2017-09-15

A Link Quality Estimation Method for WSNs Based on Extreme Learning Machine
LIU Lin-lan,XU Jiang-bo,CHEN Yu-bin,SHU Jian. A Link Quality Estimation Method for WSNs Based on Extreme Learning Machine[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(1): 134-138. DOI: 10.13190/j.jbupt.2017-185
Authors:LIU Lin-lan  XU Jiang-bo  CHEN Yu-bin  SHU Jian
Affiliation:1. School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China;
2. School of Software, Nanchang Hangkong University, Nanchang 330063, China
Abstract:An approach of estimating link quality was proposed which is based on extreme learning machine. The index of link asymmetry, the coefficient of variation of signal to noise ratio and mean signal to noise ratio are chosen as link quality parameters. Link quality level is classified by link packet receive rate which is the evaluation index. Particle swarm optimization algorithm is employed to optimize input weights and offset parameter, so that link quality model is built. In different scenarios, compared with the support vector classification machine estimate methods, the experimental results show that the proposed estimation method achieves better precision.
Keywords:wireless sensor networks  link quality estimation  extreme learning machine  particle swarm optimization algorithm  
本文献已被 万方数据 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号