首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进最小二乘支持向量回归机的链路质量预测
引用本文:舒坚,贾晨浩,陶娟. 基于改进最小二乘支持向量回归机的链路质量预测[J]. 北京邮电大学学报, 2018, 41(2): 44-49. DOI: 10.13190/j.jbupt.2017-024
作者姓名:舒坚  贾晨浩  陶娟
作者单位:南昌航空大学 软件学院, 南昌 330063
基金项目:国家自然科学基金项目(61762065;61501218),江西省自然科学基金资助重点项目(20171BAB202009;20171ACB20018),江西省研究生创新专项资金项目(YC2016-S356)
摘    要:为了准确地预测链路质量,提出基于改进最小二乘支持向量回归机的无线传感器网络链路质量预测模型.采用粗糙集理论约简链路质量参数,以提取出有效反映链路质量的特征参数;利用遗传算法优化最小二乘支持向量回归机的惩罚因子和核函数宽度.实验结果表明,与Experts Advice预测模型相比,提出的预测模型具有更高的精度.

关 键 词:无线传感器网络  链路质量预测  遗传算法  最小二乘支持向量回归机  
收稿时间:2017-07-21

Link Quality Prediction for Sensor Network Based on Improved LS-SVR
SHU Jian,JIA Chen-hao,TAO Juan. Link Quality Prediction for Sensor Network Based on Improved LS-SVR[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(2): 44-49. DOI: 10.13190/j.jbupt.2017-024
Authors:SHU Jian  JIA Chen-hao  TAO Juan
Affiliation:School of Software, Nanchang Hangkong University, Nanchang 330063, China
Abstract:In order to predict the link quality accurately, a link quality prediction model was proposed to predict link quality for sensor networks based on improved least square support vector regression machine (LS-SVR). The rough set (RS) was introduced to reduce the link quality metrics so as to extract the effective characteristic metrics of the link quality. And the genetic algorithm (GA) was employed in LS-SVR to optimize the penalty factor and kernel width. Experiments show that compared with the experts advice-based prediction model, the proposed prediction model achieves better accuracy.
Keywords:wireless sensor networks  link quality prediction  genetic algorithm  least squares support vector regression machine  
本文献已被 万方数据 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号