首页 | 本学科首页   官方微博 | 高级检索  
     


Improvement of tensile properties and toughness of an epoxy resin by nanozirconium-dioxide reinforcement
Authors:Rosa Medina  Frank Haupert  Alois K Schlarb
Affiliation:1. Institut für Verbundwerkstoffe GmbH, University of Kaiserslautern, Erwin Schr?dinger Str. 58, Kaiserslautern, 67663, Germany
Abstract:Zirconium dioxide (ZrO2) nanoparticles were systematically added as reinforcement to a diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin. A series of composites with varying amounts of nanoparticles was prepared and their morphology and mechanical properties were studied. The obtained nanocomposites were characterized by tensile tests, dynamic mechanical thermal analysis, and fracture toughness (KIC) investigations; by standardized methods, to define the influence of the nanoparticle content on their mechanical and thermal properties. The morphological analysis of the composites shows that nanoparticles form small clusters, which are uniformly distributed into the matrix bulk. The tensile modulus (E) and the KIC of the epoxy matrix increase at rising zirconia content. Improvements of more than 37% on modulus and 100% on KIC were reached by the nanocomposite containing 10 vol.-% ZrO2 with respect to the neat epoxy (Eo = 3.1 GPa, KICo = 0.74 MPam0.5). The presence of nanoparticles produces also an increment on glass transition temperature (T g). The epoxy resin added with 8 vol.-% ZrO2 records a T g approximately 8% higher than the unmodified matrix (T go = 100.3 °C).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号