首页 | 本学科首页   官方微博 | 高级检索  
     


Steady-state crack growth and fracture work based on the theory of mechanism-based strain gradient plasticity
Authors:Y Wei  X Qiu
Affiliation:a LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, PR China
b Failure Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Abstract:Mode I steady-state crack growth is analyzed under plane strain conditions in small scale yielding. The elastic-plastic solid is characterized by the mechanism-based strain gradient (MSG) plasticity theory J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48 (2000) 99]. The distributions of the normal separation stress and the effective stress along the plane ahead of the crack tip are computed using a special finite element method based on the steady-state fundamental relations and the MSG flow theory. The results show that during the steady-state crack growth, the normal separation stress on the plane ahead of the crack tip can achieve considerably high value within the MSG strain gradient sensitive zone. The results also show that the crack tip fields are insensitive to the cell size parameter in the MSG theory. Moreover, in the present research, the steady-state fracture toughness is computed by adopting the embedded process zone (EPZ) model. The results display that the steady-state fracture toughness strongly depends on the separation strength parameter of the EPZ model and the length scale parameter in the MSG theory. Furthermore, in order for the results of steady crack growth to be comparable, an approximate relation between the length scale parameters in the MSG theory and in the Fleck-Hutchinson strain gradient plasticity theory is obtained.
Keywords:Steady-state crack growth  Crack tip fields  Fracture toughness  Mechanism-based strain gradient plasticity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号