首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of fracture toughness for heat-resistant steels considering specimen dimensions. Report 2. Ductile fracture
Authors:V. T. Troshchenko  V. V. Pokrovsky  V. G. Kaplunenko
Affiliation:(1) Institute for Problems of Strength, National Academy of Sciences of Ukraine, Kiev, Ukraine
Abstract:A model of ductile failure of a body with a crack has been developed which enables predicting fracture toughness on the upper shelf of the fracture toughness temperature dependence taking into account the influence of the stress state. The model is based on the physical-mechanical model of ductile failure which is controlled by the critical value εf reached by plastic strain at the crack tip ε i ρ . In this case it is assumed that both the ε i ρ value, which precedes the crack growth onset by the mechanism of pore coalescence, and the critical strain εf are functions of specific stress state parameters, namely: the critical strain is a function of the stress state triaxiality σ m n m is the hydrostatic stress, σ i is the stress intensity), and ε i ρ is a function of the parameter χ introduced, which is an explicit function of all three principal local stresses in the process zone at the crack tip and which defines the degree to which the stress state approaches the plane strain conditions for a body of specified thickness. The model developed has two modifications one of which enables predicting fracture toughness of large-size bodies from the results of testing only small cylindrical specimens without cracks (smooth and with a circular recess) and the other from the results of testing small cylindrical specimens and small specimens with a crack. Translated from Problemy Prochnosti, No. 2, pp. 5–19, March–April, 1997.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号