Secondary hardening and fracture behavior in alloy steels containing Mo, W, and Cr |
| |
Authors: | H. Kwon K. B. Lee J. B. Lee Y. S. Kim H. R. Yang |
| |
Affiliation: | (1) the Department of Metallurgy and Materials Engineering, Kookmin University, 136-702 Seoul, Korea;(2) the Department of Mechanical Engineering, Inchun Junior College, 402-750 Inchun, Korea |
| |
Abstract: | In 4Mo, 6W, 2Mo3W, 2Mo2Cr, and 3W2Cr alloy steels, which contain alloying elements, such as Mo, W and Cr, contributing to the secondary hardening by forming M2C-type carbide, the secondary hardening and fracture behavior were studied. Molybdenum had a strong effect on secondary hardening, while W had a very weak effect on it but delayed the overaging. The MoW steel exhibited both moderately strong hardening and considerable resistance to overaging. On the other hand, the secondary hardening effect was diminished by the Cr addition, because the cementite of M3C type was stabilized at higher temperatures and the formation of M2C carbides was thus inhibited. Although the Cr addition had no merit in the secondary hardening itself, it eliminated the secondary hardening embrittlement (SHE). This was observed as a severe intergranular embrittlement due to the impurity segregation for the Mo and MoW steels and as a decrease in upper shelf energy for W steel, even in the overaged condition. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|