首页 | 本学科首页   官方微博 | 高级检索  
     


Continual planning and acting in dynamic multiagent environments
Authors:Michael Brenner  Bernhard Nebel
Affiliation:(1) Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, via Sommarive 14, 38100 Povo (TN), Italy;(2) Department of Computer Science, University of Toronto, 40 St George St., Toronto, ON, M5S 2E4, Canada
Abstract:In order to behave intelligently, artificial agents must be able to deliberatively plan their future actions. Unfortunately, realistic agent environments are usually highly dynamic and only partially observable, which makes planning computationally hard. For most practical purposes this rules out planning techniques that account for all possible contingencies in the planning process. However, many agent environments permit an alternative approach, namely continual planning, i.e. the interleaving of planning with acting and sensing. This paper presents a new principled approach to continual planning that describes why and when an agent should switch between planning and acting. The resulting continual planning algorithm enables agents to deliberately postpone parts of their planning process and instead actively gather missing information that is relevant for the later refinement of the plan. To this end, the algorithm explictly reasons about the knowledge (or lack thereof) of an agent and its sensory capabilities. These concepts are modelled in the planning language (MAPL). Since in many environments the major reason for dynamism is the behaviour of other agents, MAPL can also model multiagent environments, common knowledge among agents, and communicative actions between them. For Continual Planning, MAPL introduces the concept of of assertions, abstract actions that substitute yet unformed subplans. To evaluate our continual planning approach empirically we have developed MAPSIM, a simulation environment that automatically builds multiagent simulations from formal MAPL domains. Thus, agents can not only plan, but also execute their plans, perceive their environment, and interact with each other. Our experiments show that, using continual planning techniques, deliberate action planning can be used efficiently even in complex multiagent environments.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号