首页 | 本学科首页   官方微博 | 高级检索  
     


Process mineralogy of suspended particles from a simulated commercial flash smelter
Authors:Richard D. Hagni   Christopher B. Vierrether  H. Y. Sohn
Affiliation:(1) Department of Geology and Geophysics, University of Missouri-Rolla, 65401 Rolla, MO;(2) Department of Metallurgy and Metallurgical Engineering, University of Utah, 84112-1183 Salt Lake City, UT
Abstract:Polished sections of pyrometallurgical intermediate products from a simulated commercial flash furnace were examined by reflected light microscopy, scanning electron microscopy-energy dispersive spectrometry and electron backscatter analysis, and microprobe analysis for phase and textural relationships. The smelter feed is a copper concentrate from a porphyry copper deposit. The concentrate consists primarily of chalcopyrite, bornite, and pyrite with smaller amounts of covellite, chalcocite, molybdenite, magnetite, galena, and sphalerite. The flash furnace reactions for pyrite and chalcopyrite can be observed by reflected light microscopy. Reacted angular particles of pyrite exhibit successive rims of fibrous pyrrhotite and hematite or magnetite. Reacted angular chalcopyrite particles show successive rims of bornite, digenite, and chalcocite. Spherical particles, formed by the complete melting of former pyrite and chalcopyrite particles, consist of variable amounts of granular pyrrhotite with magnetite rims and minor hematite. Spherical particles, formed by the complete melting of former chalcopyrite particles, exhibit exsolution intergrowths with varying proportions of intermediate solid solution, bornite, digenite, and chalcocite, and have rims of hematite, magnetite, and copper-iron spinel. Electron microprobe analyses show that the iron oxides contain significant copper and minor zinc in their structures. Sphalerite and molybdenite do not show evident mineralogical reactions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号