首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor
Affiliation:1. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China;2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract:N-doped graphene (NG) materials have been prepared through a one-step solvothermal reaction by using o-phenylenediamine as a double-N precursor. N-doping and reduction of graphene oxide (GO) are both achieved simultaneously during the solvothermal reaction. The results of scanning electron microscopy and high resolution transmission electron microscopy measurements indicate that NG is highly crumpled. And the N-doping is confirmed by elemental analysis, X-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy and ultraviolet–visible spectroscopy. The doping level of nitrogen reaches up to 7.7 atom% and the types in NG are benzimidazole-N and phenazine-N. The NG materials exhibit excellent electrochemical performance for symmetric supercapacitors with a high specific capacitance of 301 F g1 at a current density of 0.1 A g1 in 6 M KOH electrolyte, which is remarkably higher than the solvothermal products of pristine GO (210 F g1 at 0.1 A g1). The NG materials also exhibit superior cycling stability (97.1% retention) and coulombic efficiency (99.2%) after 4000 cycles, due to the high content of nitrogen atoms, unique types of nitrogen and improved electronic conductivity.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号