首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental simulation of helium pressure rise during a quench of a superconducting coil cooled by a superfluid helium bath
Affiliation:1. Spin Engineering Physics Team, Korea Basic Science Institute, Daejeon 34133, Republic of Korea;2. Department of Electrical Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
Abstract:Experimental and numerical studies have been conducted with the aim of modeling pressure rises which occur in the helium, during quenches of the 11.7-T superconducting magnet named Iseult. Iseult is based on a double-pancake winding internally cooled by superfluid helium channels opening into a pressurized He II bath at 1.8 K. A scale mock-up has been built of 10 copper equivalent pancake slices and 7 helium channels per pancake. The heat produced by a quench of the Iseult magnet is simulated by electrical heaters put inside each copper plate. Cryogenic pressure and temperature sensors have been fitted in the helium channels and in the bath. Bath pressure measurements are given for various heating powers, various numbers of heated plates and various bath volumes. Comparisons with a simple numerical model permit to identify the main physical mechanisms which drive the pressure rise during a quench.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号