首页 | 本学科首页   官方微博 | 高级检索  
     

基于鲁棒控制的自适应分数阶梯度优化算法设计(英文)
引用本文:刘佳旭,陈嵩,蔡声泽,许超,褚健. 基于鲁棒控制的自适应分数阶梯度优化算法设计(英文)[J]. 控制理论与应用, 2024, 41(7): 1187-1196
作者姓名:刘佳旭  陈嵩  蔡声泽  许超  褚健
作者单位:浙江大学数学科学学院,浙江大学数学科学学院,浙江大学控制科学与工程学院,浙江大学控制科学与工程学院,宁波工业与互联网研究院
基金项目:科技创新2030新一代人工智能重大项目(2018AAA0100902),国家重点研发计划(2019YFB1705800),国家自然科学基金(61973270)
摘    要:当目标函数是强凸函数时, 一般的分数阶梯度下降法不能够使函数收敛到最小值点, 只能收敛到一个包含最小值点的区域内或者是发散的. 为了解决这个问题, 本文提出了自适应分数阶梯度下降法(AFOGD)和自适应分数阶加速梯度下降法(AFOAGD)两种新的优化算法. 受到鲁棒控制理论中二次约束和李雅普诺夫稳定性理论的启发, 建立了一个线性矩阵不等式去分析所提出的算法的收敛性. 当目标函数是L-光滑且m-强凸时, 算法可以达到R线性收敛. 最后几个数值仿真证明了算法的有效性和优越性.

关 键 词:梯度下降法   自适应算法   鲁棒控制   分数阶微积分   加速算法
收稿时间:2023-08-08
修稿时间:2024-04-10

The novel adaptive fractional order gradient decent algorithms design via robust control
LIU Jia-xu,CHEN Song,CAI Sheng-ze,XU Chao and CHU Jian. The novel adaptive fractional order gradient decent algorithms design via robust control[J]. Control Theory & Applications, 2024, 41(7): 1187-1196
Authors:LIU Jia-xu  CHEN Song  CAI Sheng-ze  XU Chao  CHU Jian
Affiliation:School of Mathematical Sciences,Zhejiang University,School of Mathematical Sciences, Zhejiang University,School of Control Science and Engineering, Zhejiang University,School of Control Science and Engineering, Zhejiang University,Ningbo Industrial Internet Research Institute
Abstract:The vanilla fractional order gradient descent may converge to a region around the global minimum instead of converging to the exact minimum point, or even diverge, in the case where the objective function is strongly convex. To address this problem, a novel adaptive fractional order gradient descent (AFOGD) method and a novel adaptive fractional order accelerated gradient descent (AFOAGD) method are proposed in this paper. Inspired by the quadratic constraints and Lyapunov stability analysis from robust control theory, we establish a linear matrix inequality to analyse the convergence of our proposed algorithms. We prove that our proposed algorithms can achieve R-linear convergence when the objective function is L-smooth and m-strongly-convex. Several numerical simulations are demonstrated to verify the effectiveness and superiority of our proposed algorithms
Keywords:gradient descent   adaptive algorithm   robust control   fractional order calculus   accelerated algorithm
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号