Measurement and modeling of land mobile satellite propagation atUHF and L-band |
| |
Authors: | Vogel W.J. Hong U.-S. |
| |
Affiliation: | Electr. Eng. Res. Lab., Texas Univ., Austin, TX ; |
| |
Abstract: | A propagation experiment is described in which a stratospheric balloon served as a transmitter platform at 870 and 1502 MHz in simulation of a land mobile satellite. A vehicle followed the drifting balloon along roads of western Texas and New Mexico, collecting at L -band amplitude and phase, and at UHF amplitude information only for elevation angles between 25° and 45°. The data obtained has been analyzed and is presented along with results from modeling of multipath scattering and roadside tree attenuation. The signal, with variations caused by multipath propagation and tree shadowing, was reduced by 3 dB at L-band and 2 dB at UHF for one percent of all locations. A median ratio of 3.9 was found between peak-to-peak phase (degrees) and power (dB) fluctuations. The ratio between L-band and UHF dB attenuation averages varied from 1.3 to 1.0 at fade levels from 6 to 23 dB. Optical sky brightness was measured and used to predict fade distribution with great accuracy. A single-scatterer multipath model is introduced. It is used to duplicate some of the measured data and to show the dependence of power variations on satellite elevation angle. Using Fresnel diffraction theory, the attenuation caused by a model tree was calculated to be near 10 dB and the maximum fade was found to increase by the logarithm of the number of branches |
| |
Keywords: | |
|
|