首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical Simulation of Continuous Tension Leveling Process of Thin Strip Steel and Its Application
Authors:LI Sheng-zhi  YIN Yuan-de  XU Jie  HOU Jun-ming  Jaehong YOON
Affiliation:1. School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China
2. School of Nano and Advanced Materials Engineering, Changwon National University, Changwon 641-773, Korea
Abstract:Cold-rolled thin strip steel of high flatness quality undergoes multistage deformation during tension leveling. Thus, the parameters of set-up and manipulating are more difficult. With the aid of FE code MSC. MARC, the tension leveling process of thin strip steel was numerically simulated. Concentrating on the influence of the roll intermeshes in 2# anti-cambering on the distribution and magnitude of residual stresses in leveled strip steel, several experiments were done with the tension leveler based on the results from the simulation. It was found from the simulation that the magnitude of longitudinal residual stresses in the cross-section of the leveled strip steel regularly presents obvious interdependence with the roll intermeshes in 2# anti-cambering. In addition, there is a steady zone as the longitudinal residual stresses of the surface layers in leveled strip steel vary with the roll intermeshes of 2# anticambering, which is of importance in the manipulation of tension levelers. It was also found that the distribution of strains and stresses across the width of strip steel is uneven during leveling or after removing the tension loaded upon the strip, from which it was found that 3D simulation could not be replaced by 2D analysis because 2D analysis in this case cannot represent the physical behavior of strip steel deformation during tension leveling.
Keywords:cold-rolled strip steel  flatness  tension leveling  numerical simulation  shell element  residual stress
本文献已被 CNKI 维普 万方数据 ScienceDirect 等数据库收录!
点击此处可从《钢铁研究学报(英文版)》浏览原始摘要信息
点击此处可从《钢铁研究学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号