首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于单向FP_tree的最大频繁项集挖掘算法研究
作者姓名:
阳晗杰
邱桂苹
穆森
作者单位:
中国航天科工集团第二研究院706所
摘 要:
频繁项集挖掘算法是数据挖掘的主要研究方向。目前主流的频繁项集挖掘算法有:产生候选频繁项集和不产生候选频繁项集两种,分别是Apriori算法、FP_growth算法。这两种算法各有优缺点。本文在分析现有算法的基础上,充分利用FP_tree信息压缩的优点,设计出一种产生候选项集的最大频繁项集挖掘算法。该算法首先构造一棵单向FP_tree,再利用最大频繁项集特性对候选项集进行剪枝,不需要扫描数据库计算候选项集的支持数。仿真实验表明,与现有算法相比,该算法的时、空效率都有巨大提高。
关 键 词:
数据挖掘
单向FP_tree
最大频繁项集
本文献已被
CNKI
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号