首页 | 本学科首页   官方微博 | 高级检索  
     

基于镜像阈值分解的层叠滤波器优化
引用本文:崔颖,赵春晖. 基于镜像阈值分解的层叠滤波器优化[J]. 哈尔滨工程大学学报, 2006, 27(6): 904-907
作者姓名:崔颖  赵春晖
作者单位:哈尔滨工程大学,信息与通信工程学院,黑龙江,哈尔滨,150001;哈尔滨工程大学,信息与通信工程学院,黑龙江,哈尔滨,150001
基金项目:教育部全国优秀博士学位论文作者专项基金 , 高等学校博士学科点专项科研项目 , 黑龙江省杰出青年科学基金
摘    要:层叠滤波器的优化设计是层叠滤波理论研究中最为关键的问题.阈值分解是层叠滤波器的特性之一,它有传统阈值分解和镜像阈值分解2种形式,镜像阈值分解定义的层叠滤波器不仅具有低通滤波的特性,还具有带通和高通的特性.文中在MAE准则下,提出一种基于镜像阈值分解的快速自适应层叠滤波器优化算法,该算法在迭代过程中约束代价向量的层叠性并判断其收敛性,最终获得最优层叠滤波器的正布尔函数.通过仿真实验验证最优层叠滤波器的性能.结果表明该算法设计的层叠滤波器具有良好的细节保持能力和去噪声能力,有效地改善了滤波性能.

关 键 词:非线性滤波器  镜像阈值分解  层叠滤波器  快速自适应滤波  图像处理
文章编号:1006-7043(2006)06-0904-04
修稿时间:2005-03-30

Optimization of stack filters based on mirrored threshold decomposition
CUI Ying,ZHAO Chun-hui. Optimization of stack filters based on mirrored threshold decomposition[J]. Journal of Harbin Engineering University, 2006, 27(6): 904-907
Authors:CUI Ying  ZHAO Chun-hui
Abstract:Optimizing stack filters is the most pivotal issue of the study of stack filters theory.The threshold decomposition is one of stack filters property and has two modes: traditional threshold decomposition and mirrored threshold decomposition.The stack filters defined in the binary domain of mirrored threshold decomposition have been empowered not only with lowpass filtering characteristics but with bandpass and highpass characteristics as well.In this paper,under MAE criterion,a fast adaptive optimization algorithm based on mirrored threshold decomposition is presented.This algorithm restricts stacking properties of cost vector and estimates its astringency in order to attain positive Boolean function of optimal stack filters.The performance of optimal stack filters is illustrated by simulations.The results of experiments show that the optimal stack filters can suppress noise and protect the details of image effectively,which improve filtering capability.
Keywords:nonlinear filters  mirrored threshold decomposition  stack filters  fast adaptive filtering  image processing
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号