首页 | 本学科首页   官方微博 | 高级检索  
     

Mineralogy of clean coal combustion by-products
作者姓名:LigangWang  ChangheChen  KruseH.Kolker
作者单位:[1]TheStateKeyLaboratoryofCleanCombustionofCoal,TsinghuaUniversity,Beijing100084,China [2]DepartmentofChemicalEngineering,UniversityofNorthDakota,POBox9018,ND58202-9018,USA
摘    要:Coal combustion technologies are changing in order to burn coal more cleanly. Many “clean combustion“ and postcombustion technologies are developed to remove SO2 and NOx gases, particulate matter during combustion, or from the flue gases leaving the furnace. This paper focuses on three types of fly ash (flue gas desulfurization (FGD) residuals, atmospheric fluidized bed combustion (AFBC) residuals and sorbent duct injection (SDI) residuals) which produced by “the clean combustion“ and postcombustion technologies. The residuals formed by FGD are PCFA (pulverized coal fly ash) grains entrained with reacted and unreacted sorbent and have lower bulk densities than PCFA grains because it contains higher concentrations of calcium and sulfur, and lower concentrations of silicon, aluminum and iron than PCFAs. AFBC residuals consist of spent bed which is a heterogeneous mixture of coarse-grained bed material and irregularly shaped, unfused, spherical PCFAs. The main crystalline phases in AFBC residuals are anhydrite (reacted sorbent), quartz and lime (unreacted sobent), calcite, hematite, periclase, magnetite and feldspars.The residuals produced by SDI contained 65%-70% PCFA with the larger sizes material being irregularly shaped, fused or roughedged. The reaction products of sorbent (portlandite and lime) included calcium sulfate (anhydrite) and calcium sulfate. The chemical properties of these residuals are similar to those of high calcium PCFAs because of the high alkalinity and high pH of these residuals.

关 键 词:矿物学  飞灰  煤燃烧  清洁燃烧  烟道脱硫  大气硫化床  管道注射吸附剂

Mineralogy of clean coal combustion by-products
LigangWang ChangheChen KruseH.Kolker.Mineralogy of clean coal combustion by-products[J].Journal of University of Science and Technology Beijing,2004,11(4):293-296.
Authors:Ligang WANG  Changhe Chen  Kruse HKolker
Abstract:Coal combustion technologies are changing in order to bum coal more cleanly. Many "clean combustion" and postcombustion technologies are developed to remove SO2 and NOx gases, particulate matter during combustion, or from the flue gases leaving the furnace. This paper focuses on three types of fly ash (flue gas desulfurization (FGD) residuals, atmospheric fluidized bed combustion (AFBC) residuals and sorbent duct injection (SDI) residuals) which produced by "the clean combustion" and postcombustion technologies. The residuals formed by FGD are PCFA (pulverized coal fly ash) grains entrained with reacted and unreacted sorbent and have lower bulk densities than PCFA grains because it contains higher concentrations of calcium and sulfur, and lower concentrations of silicon, aluminum and iron than PCFAs. AFBC residuals consist of spent bed which is a heterogeneous mixture of coarse-grained bed material and irregularly shaped, unfused, spherical PCFAs. The main crystalline phases in AFBC residuals are anhydrite (reacted sorbent), quartz and lime (unreacted sobent), calcite, hematite, periclase, magnetite and feldspars.The residuals produced by SDI contained 65%-70% PCFA with the larger sizes material being irregularly shaped, fused or roughedged. The reaction products of sorbent (portlandite and lime) included calcium sulfate (anhydrite) and calcium sulfate. The chemical properties of these residuals are similar to those of high calcium PCFAs because of the high alkalinity and high pH of these residuals.
Keywords:fly ash  mineralogy  flue gas desulfurization  atmospheric fluidized bed  combustion  sorbent duct injection
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号