首页 | 本学科首页   官方微博 | 高级检索  
     


Damage tolerance reliability analysis of automotive spot-welded joints
Authors:Sankaran Mahadevan  Kan Ni
Affiliation:Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235, USA
Abstract:This paper develops a damage tolerance reliability analysis methodology for automotive spot-welded joints under multi-axial and variable amplitude loading history. The total fatigue life of a spot weld is divided into two parts, crack initiation and crack propagation. The multi-axial loading history is obtained from transient response finite element analysis of a vehicle model. A three-dimensional finite element model of a simplified joint with four spot welds is developed for static stress/strain analysis. A probabilistic Miner's rule is combined with a randomized strain-life curve family and the stress/strain analysis result to develop a strain-based probabilistic fatigue crack initiation life prediction for spot welds. Afterwards, the fatigue crack inside the base material sheet is modeled as a surface crack. Then a probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction for spot welds. Both methods are implemented with MSC/NASTRAN and MSC/FATIGUE software, and are useful for reliability assessment of automotive spot-welded joints against fatigue and fracture.
Keywords:Spot weld joint  Fatigue  Fracture  Probabilistic analysis  Strain life  Crack growth  Multi axial loading  Variable amplitude loading  Finite element modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号