首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China
Authors:Yao Guanrong  Gao Quanzhou  Wang Zhengang  Huang Xiakun  He Tong  Zhang Yongling  Jiao Shulin  Ding Jian
Affiliation:School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, PR of China.
Abstract:The partial pressure of carbon dioxide (pCO(2)) in surface water was surveyed monthly at 6 sampling sites along the entire length of the lower reaches of the Xijiang River, a subtropical monsoon river in China, and at the mouths of its major tributaries, over a whole hydrological year from April 2005 to March 2006, to reveal the seasonal and spatial dynamics of pCO(2). Intensive sampling and measurements were also conducted at Wuzhou gauge station in June and July to investigate the impact of floodwater on pCO(2) and to further explore the relationship between river discharge and pCO(2). The pCO(2) levels were well above atmospheric equilibrium (380 microatm) during the entire survey period with obvious seasonal and spatial variations, ranging from 600 microatm to 7200 microatm for the mainstream and from 700 to 11000 microatm for tributaries, respectively. The pattern of pCO(2) seasonal variation across 6 sites was almost consistent with each other with little difference. The pCO(2) levels in the dry season were relatively low, with relatively slight temporal and spatial fluctuations that were predominantly controlled by in situ biogenic activities. While the pCO(2) in the wet season greatly varied with river discharge, both annual maximum and minimum pCO(2) levels occurring in this period. The much higher pCO(2) in the early wet season were mainly induced by increasing baseflow and interflow that flushed significant soil CO(2) into the streams, whereas the lower pCO(2) observed after floods from July to September, some even lower than pCO(2) levels in the dry season, potentially resulted from in situ plankton blooms. The annual minima pCO(2) levels occurring in this period were caused by the dilution effect of floodwater. There was no obvious downstream trend in pCO(2) variation during the whole survey period, probably a consequence of disturbance from tributaries or spatially distinct channel characteristics and water environments. Based on measurements, we estimate that the water-to-air CO(2) flux in the lower reaches of the Xijiang River is about 8.3-15.6 Mg C ha(-1)y(-1). The role of the Xijiang River as a net source of atmospheric CO(2) is undoubted.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号