首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic hierarchical reactive controller synthesis
Authors:Anne-Kathrin Schmuck  Rupak Majumdar  Adrian Leva
Affiliation:1.Max Planck Institute for Software Systems,Kaiserslautern,Germany
Abstract:In the formal approach to reactive controller synthesis, a symbolic controller for a possibly hybrid system is obtained by algorithmically computing a winning strategy in a two-player game. Such game-solving algorithms scale poorly as the size of the game graph increases. However, in many applications, the game graph has a natural hierarchical structure. In this paper, we propose a modeling formalism and a synthesis algorithm that exploits this hierarchical structure for more scalable synthesis. We define local games on hierarchical graphs as a modeling formalism that decomposes a large-scale reactive synthesis problem in two dimensions. First, the construction of a hierarchical game graph introduces abstraction layers, where each layer is again a two-player game graph. Second, every such layer is decomposed into multiple local game graphs, each corresponding to a node in the higher level game graph. While local games have the potential to reduce the state space for controller synthesis, they lead to more complex synthesis problems where strategies computed for one local game can impose additional requirements on lower-level local games. Our second contribution is a procedure to construct a dynamic controller for local game graphs over hierarchies. The controller computes assume-admissible winning strategies that satisfy local specifications in the presence of environment assumptions, and dynamically updates specifications and strategies due to interactions between games at different abstraction layers at each step of the play. We show that our synthesis procedure is sound: the controller constructs a play that satisfies all local specifications. We illustrate our results through an example controlling an autonomous robot in a building with known floor plan and provide simulation results using an implementation of our algorithm on top of LTLMoP.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号