首页 | 本学科首页   官方微博 | 高级检索  
     


Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro
Authors:Qiao Xiao-Fei  Zhou Jia-Cai  Xiao Jia-Wen  Wang Ye-Fu  Sun Ling-Dong  Yan Chun-Hua
Affiliation:Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
Abstract:Upconversion luminescent nanoparticles (UCNPs) have been widely used in many biochemical fields, due to their characteristic large anti-Stokes shifts, narrow emission bands, deep tissue penetration and minimal background interference. UCNPs-derived multifunctional materials that integrate the merits of UCNPs and other functional entities have also attracted extensive attention. Here in this paper we present a core-shell structured nanomaterial, namely, NaGdF(4):Yb,Er@CaF(2)@SiO(2)-PS, which is multifunctional in the fields of photodynamic therapy (PDT), magnetic resonance imaging (MRI) and fluorescence/luminescence imaging. The NaGdF(4):Yb,Er@CaF(2) nanophosphors (10 nm in diameter) were prepared via sequential thermolysis, and mesoporous silica was coated as shell layer, in which photosensitizer (PS, hematoporphyrin and silicon phthalocyanine dihydroxide) was covalently grafted. The silica shell improved the dispersibility of hydrophobic PS molecules in aqueous environments, and the covalent linkage stably anchored the PS molecules in the silica shell. Under excitation at 980 nm, the as-fabricated nanomaterial gave luminescence bands at 550 nm and 660 nm. One luminescent peak could be used for fluorescence imaging and the other was suitable for the absorption of PS to generate singlet oxygen for killing cancer cells. The PDT performance was investigated using a singlet oxygen indicator, and was investigated in vitro in HeLa cells using a fluorescent probe. Meanwhile, the nanomaterial displayed low dark cytotoxicity and near-infrared (NIR) image in HeLa cells. Further, benefiting from the paramagnetic Gd(3+) ions in the core, the nanomaterial could be used as a contrast agent for magnetic resonance imaging (MRI). Compared with the clinical commercial contrast agent Gd-DTPA, the as-fabricated nanomaterial showed a comparable longitudinal relaxivities value (r(1)) and similar imaging effect.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号