首页 | 本学科首页   官方微博 | 高级检索  
     


Construction of an Unusual Two-Dimensional Layered Structure for Fused-Ring Energetic Materials with High Energy and Good Stability
Affiliation:1. Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA;2. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
Abstract:The creation of high-performance energetic materials with good mechanical sensitivities has been a great challenge over the past decades, since such materials have huge amounts of energy and are thus essentially unstable. Here, we report on a promising fused-ring energetic material with an unusual two-dimensional (2D) structure, 4-nitro-7-azido-pyrazol-[3,4-d]-1,2,3-triazine-2-oxide (NAPTO), whose unique 2D structure has been confirmed by single-crystal X-ray diffraction. Experimental studies show that this novel energetic compound has remarkably high energy (detonation velocity D = 9.12 km·s−1; detonation pressure P = 35.1 GPa), excellent sensitivities toward external stimuli (impact sensitivity IS = 18 J; friction sensitivity FS = 325 N; electrostatic discharge sensitivity EDS = 0.32 J) and a high thermal decomposition temperature (203.2 °C), thus possessing the dual advantages of high energy and low mechanical sensitivities. To our knowledge, NAPTO is the first fused-ring energetic material with 2D layered crystal stacking. The stabilization mechanism toward external stimuli were investigated using molecular simulations, and the theoretical calculation results demonstrate that the ultraflat 2D layered structure can buffer external mechanical stimuli more effectively than other structures by converting the mechanical energy acting on the material into layer sliding and compression. Our study reveals the great promise of the fused-ring 2D layered structure for creating advanced energetic materials.
Keywords:Energetic materials  Fused heterocycles  2D layered structure  High energy  Stability  Sensitivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号