首页 | 本学科首页   官方微博 | 高级检索  
     


Low-velocity impact damage response of fiberglass/magnesium fiber-metal laminates under different size and shape impactors
Authors:Davide De Cicco  Zohreh Asaee
Affiliation:1. Department of Mechanical Engineering, Université Pierre et Marie Curie, Paris, France;2. Advanced Composite and Mechanics Lab, Department of Civil and Resources Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
Abstract:Low-velocity impact tests are performed on fiberglass/AZ31B-H24 magnesium fiber-metal laminates (FMLs) with various configurations in order to gain a better understanding of the effect of an impactor's features on the response of this type of FML. For that, impactors with two different shapes (hemispherical and sharp-edged) and sizes are used to impact the specimens. The impact response data, such as the deformation of the contact location and energy absorption, is obtained directly during the impact tests through the impact equipment, while mechanical sectioning was carried out to establish the extent of delaminated area and post-impact residual deformation. While the sharp-edged impactor caused the development of cracks on the metal constituent, and delamination within the specimens, the hemispherical ones imposed more influence over the residual deformation. Noticeable differences are observed in response of FML specimens made with two and three layers of magnesium, especially with respect to the energy absorption capacity. Moreover, finite-element analysis, as a major part of this study, has been employed to simulate the low-velocity impact response of FML specimens. The behavior of specimens has been simulated using the commercial finite-element code ABAQUS. The results imply that there is a good agreement between the experimental and numerical results.
Keywords:3D fiberglass  energy absorption  fiber metal laminate  finite element analysis  low velocity impact  magnesium alloy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号