首页 | 本学科首页   官方微博 | 高级检索  
     


Existence of Critical Recovery and Impacts of Operational Mode on Potable Water Microfiltration
Authors:Shankararaman Chellam  Joseph G Jacangelo
Affiliation:1Sr. Engr., Montgomery Watson Americas, Inc., 560 Herndon Pkwy. Ste. 300, Herndon, VA 20170; corresponding author; E-mail: shankar. chellam@us.mw.com
2Vice Pres., Montgomery Watson Americas, Inc., 560 Herndon Pkwy. Ste. 300, Herndon, VA.
Abstract:Results from a potable water microfiltration (MF) pilot study employing untreated surface water are reported. The effects of filtrate flux and recovery on direct flow, outside-inside, hollow fiber MF fouling rates, and backwash effectiveness are presented. Constant flux experiments suggested the existence of a critical recovery below which MF fouling rates were low and effectiveness of backwashes was high and relatively independent of the recovery. However, in the range of experimental conditions investigated, fouling rates increased dramatically and backwash effectiveness decreased steeply when this critical recovery was exceeded regardless of the flux. In general, for a fixed recovery, specific flux profiles analyzed on the basis of volume filtered per unit membrane area were insensitive to filtrate flux. Fouling was accelerated by operating membranes at constant flux rather than at constant pressure, in part, because of membrane compaction and cake compression. Changing the mode of filtration between constant flux and constant pressure is shown to have no effect on MF filtrate water quality. For any given capacity, membrane area requirements are decreased, and power requirements are increased when membranes are operated at constant flux rather than at constant pressure.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号