首页 | 本学科首页   官方微博 | 高级检索  
     


Emitter injection and collector current ideality in abrupt heterojunction AlInAs/GaInAs HBTs
Authors:R J Ferro  R G Wilson  J F Jensen  D B Rensch  W E Stanchina  R A Metzger  M W Pierce  T V Kargodorian and Y K Allen
Affiliation:

Hughes Research Laboratories, MS RL55, 3011 Malibu Canyon Road, Malibu, CA 90265, U.S.A.

Abstract:We investigated the electron injection process for high-speed N-p-n AlInAs/GaInAs HBTs by measuring collector and base currents as a function of base-emitter voltage with collector-base voltage equal to zero (Gummel plots) at temperatures from 77 to 300 K. We compared the measured collector current with calculations based on electron injection from emitter to base by tunneling through the conduction band spike and thermionic emission over it, using a modified version of the thermionic-field emission theory developed by Crowell and Rideout. Good agreement was obtained between the experimental collector current ideality factor and tunneling-thermionic emission theory for all temperatures and currents. This is an improvement over drift-diffusion and thermionic emission models, which have been used for HBTs but which do not correctly describe the experimentally observed temperature and current dependence of the ideality of the collector current. The tunneling-thermionic emission model explains the increase in collector current ideality factor that occurs as the transistor is biased at high collector current density (JC greater-than over equal to 105 A cm?2), which is the regime of operation in which fT is maximized and a low ideality factor is most important. The model also explains the experimentally observed variation of hFE with ln IC. Thus the tunneling-thermionic emission model is a useful aid in the design of the epitaxial structure for high-frequency HBTs.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号