首页 | 本学科首页   官方微博 | 高级检索  
     


A dual source photon beam model used in convolution/superposition dose calculations for clinical megavoltage x-ray beams
Authors:HH Liu  TR Mackie  EC McCullough
Affiliation:Division of Radiation Oncology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
Abstract:A realistic photon beam model based on Monte Carlo simulation of clinical linear accelerators was implemented in a convolution/superposition dose calculation algorithm. A primary and an extra-focal sources were used in this beam model to represent the direct photons from the target and the scattered photons from other head structures, respectively. The effect of the finite size of the extra-focal source was modeled by a convolution of the source fluence distribution with the collimator aperture function. Relative photon output in air (Sc) and in phantom (Scp) were computed using the convolution method with this new photon beam model. Our results showed that in a 10 MV photon beam, the Sc, Sp (phantom scatter factor), and Scp factors increased by 11%, 10%, and 22%, respectively, as the field size changed from 3 x 3 cm2 to 40 x 40 cm2. The variation of the Sc factor was contributed mostly by an increase of the extra-focal radiation with field size. The radiation backscattered into the monitor chamber inside the accelerator head affected the Sc by about 2% in the same field range. The output factors in elongated fields, asymmetric fields, and blocked fields were also investigated in this study. Our results showed that if the effect of the backscattered radiation was taken into account, output factors in these treatment fields can be predicted accurately by our convolution algorithm using the dual source photon beam model.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号